

Proportional directional valve

· not pressure compensated

8 I/min 5 l/min = 315 bar

NG3-Mini

DESCRIPTION

Direct operated proportional spool valve in flange design NG3-Mini according to Wandfluh standard with 4 ports. The spool valve is designed to the 5 chamber principle. The volume flow is adjusted by a Wandfluh proportional solenoid (VDE standard 0580). Low pressure drop due to the body design and spool profiling. The spool is made of hardend steel. The body made of high grade hydraulic casting for long service life is painted. The cover and the solenoid are zinc coated.

FUNCTION

Proportionally to the solenoid current spool stroke, spool opening and valve volume flow will increase. Proportional directional valves NG3-Mini are not load-compensated. The optimum spool shape and progressive characteristics curve allow fine motion control. To control the valve Wandfluh proportional amplifiers are available (see register 1.13).

APPLICATION

Proportional directional spool valves are well suited for demanding applications where high resolution, high volume flow and low hysteresis are requested. They are implemented in industrial hydraulics as well as in mobile hydraulics for the smooth control of hydraulic actuators. Mini-3 valves are used where both, reduced dimensions and weight are important. Application examples: pitch control of wind generators, forest and earth moving machines, ma-chine tools and paper production machines with simple position controls, robotics and fan control.

CONTENT

GENERAL SPECIFICATIONS.....1 HYDRAULIC SPECIFICATIONS1 ELECTRICAL SPECIFICATIONS.....1 TYPE CHARTS/ DESIGNATIONS OF SYMBOLS2 CONTROL MODE2 CHARACTERISTICS.....2 DIMENSIONS.....2 PARTS LIST2 ACCESSORIES.....

TYPE	CODE
-------------	------

	W	DP F	A03 -	- 🔲 -	- 5	-	# [
Proportional directional valve								
Flange construction								
Interface nominal size 3-Mini								
Description of symbols acc. to table	e 1.10-65/2							
Nominal flow at 10 bar pressure dro over 2 metering edges = 5 l/min	ор							
9 N	VDC VDC	G12 G24						
Design-Index (Subject to change)								

GENERAL SPECIFICATIONS

Nominal size NG3-Mini acc. to Wandfluh standard Designation 4/2-, 4/3-way prop. directional valve Construction Direct operated spool valve Flange, 3 fastening holes for Mounting socket head cap screws M4x30

Fastening torque 2,8 Nm (qual. 8.8) Pipe connection Connection plates

Multi-station flange subplate Longitudinal stacking system any, preferably horizontal

Ambient temperature -20...+50°C Weight: 1 solenoid-version m = 0.5 kg2 solenoid-version m = 0.6 kg

HYDRAULIC SPECIFICATIONS

Mineral oil, other fluid on request Contamination efficiency ISO 4406:1999, class 18/16/13

(Required filtration grade ß 6...10 ≥ 75) refer to data sheet 1.0-50/2 Viscosity range 12 mm²/s...320 mm²/s

Fluid temperature Working pressure Tank pressure Nominal volume flow

Max. volume flow Leakage volume flow Hysteresis

-20...+70°C p_{max} = 315 bar (connection P, A, B) = 160 bar (connection T)

Q_N = 5 l/min at 10 bar pressure drop over 2 metering edges

 $Q_{max} = 8 \text{ l/min}$ see characteristic ≤ 5 % *

* by optimal dithersignal

ELECTRICAL SPECIFICATIONS

Construction Proportional solenoid, wet pin push type,

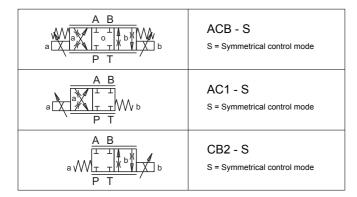
pressure tight

Standard-Nominal voltage Limiting current

Mounting position

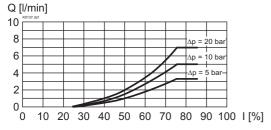
U = 12 VDC U = 24 VDC $I_{G} = 540 \text{ mA}$ $I_{c} = 1080 \text{ mA}$

Relative duty factor 100% DF (see data sheet 1.1-430)

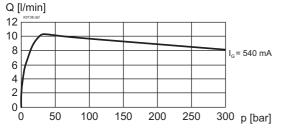

Protection class IP 65 acc. to EN 60 529

Connection/Power supply Over device plug connection acc. to ISO 4400/DIN 43650 (2P+E)

Other electrical specifications see data sheet 1.1-90 (PI29V)



TYPE CHARTS / DESIGNATIONS OF SYMBOLS

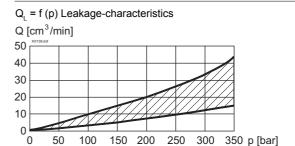


CHARACTERISTICS oil viscosity υ = 30 mm²/s

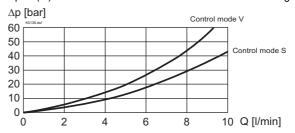
Q = f (I) Volume flow-signal-characteristics

Q = f (p) Volume flow-pressure-characteristics

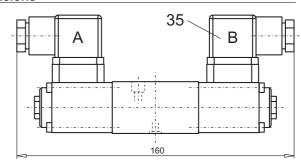
PARTS LIST


Position	Article	Description
10	256.2452 256.2416	Proportional solenoid Pl29V-G24 Proportional solenoid Pl29V-G12
20	253.8000	Plug with integrated manual override HB4,5
30	219.2001	Plug A (grey)
35	219.2002	Plug B (black)
40	056.4100	Cover
50	246.0141	Socket head cap screw M3x40 DIN 912
60	246.0109	Socket head cap screw M3x8 DIN 912
70	160.2045	O-ring ID 4,50x1,5

ACCESSORIES


Sub-plates Proportional-amplifier Register 2.9 Register 1.13

Technical explanation see data sheet 1.0-100E





 $\Delta p = f(Q)$ Pressure loss/flow-characteristics over 2 metering edges

DIMENSIONS

